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Background and motivation

Recall the classical heat equation on Rd

∂u

∂t
= ∆u.

Its fundamental solution is given by the Gauss kernal

p(t, x, y) =
1

(4πt)d/2
exp

[
−|x− y|

2

4t

]
, t > 0, x, y ∈ Rd.

d-dimensional Brownian motion generated by ∆.
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Space-fractional equation

The non-local heat equation (0 < β < 1)

∂u

∂t
= −(−∆)βu.

2β-stable Lévy process WSt.

Here St is an independent β-stable subordinator with

E e−rSt = e−tr
β

, r > 0, t ≥ 0.

By independence, the heat kernel is

E p(St, x, y) =

∫ ∞
0

p(s, x, y)P(St ∈ ds).
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2β-stable Lévy process WSt.

Here St is an independent β-stable subordinator with

E e−rSt = e−tr
β

, r > 0, t ≥ 0.

By independence, the heat kernel is

E p(St, x, y) =

∫ ∞
0

p(s, x, y)P(St ∈ ds).

"�t (ÉÇ�Æ) ()Asymptotic Formulas for the Heat Kernels of Space and Time Fractional Equations@3��Æ 2019c7� 4 / 27



Space-fractional equation

The non-local heat equation (0 < β < 1)

∂u

∂t
= −(−∆)βu.
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Time-fractional equation

Time-fractional heat equation (0 < β < 1)

∂βu

∂tβ
= ∆u.

Here ∂β

∂tβ
is the Caputo derivative:

∂βf(t)

∂tβ
=

d

dt
I1−β

(
f − f(0)

)
(t).

The Riemann-Liouville integral operator:

Iβf(t) =
1

Γ(β)

∫ t

0

f(s)

(t− s)1−β
ds.
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Time-fractional equation

Time-fractional equation (0 < β < 1)

∂βu

∂tβ
= ∆u.

Corresponding process WS−1
t

.

S−1
t := inf {s ≥ 0 : Ss > t} , t ≥ 0.

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

S−1
t is the scaling limit of a renewal process.
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Speed under time-change

• Wt
d
= t1/2W1 WSt

d
= t1/(2β)WS1

• WS−1
t

d
= tβ/2WS−1

1
(subdiffusion, slow diffusion)
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A sample path (by Jin-Kobayashi, 2019)

Black: S−1
t Red: W

S
−1
t
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Time fractional equation

Time-fractional equation (0 < β < 1)

∂βu

∂tβ
= ∆u.

The heat kernel is

E p(S−1
t , x, y) =

∫ ∞
0

p(s, x, y)P
(
S−1
t ∈ ds

)
.
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PDE vs probability

PDE Heat Kernel Process

∂tu = ∆u p(t, x, y) Wt

∂tu = −(−∆)βu E p(St, x, y) WSt

∂βt u = ∆u E p(S−1
t , x, y) WS−1

t

∂βt u = −(−∆)γu E p(TS−1
t
, x, y) WT

S
−1
t
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Heat kernel of ∂u
∂t = −(−∆)βu

p(t, x, y) is the Gauss heat kernel, and St is a β-stable
subordinator.

When β = 1/2,

E p(St, x, y) =
c(d)

td

(
1 +
|x− y|2

t2

)−(d+1)/2

.

If β 6= 1/2, NO explicit formula for E p(St, x, y)!!!

A natural question: asymptotic formula?
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Motivation 1

It is known that as |x− y|2t−1/β →∞,

Ep(St, x, y) ∼ c(d, β)t(
|x− y|2 + t1/β

)(d+2β)/2
.

Pólya, 1923, d = 1
Blumenthal and Getoor, 1960, general d ≥ 1

Tool: Bessel function

A. Bendikov, 1994, a quite elegant proof

Tool: Bochner’s subordination

Q1: asymptotics as |x− y|2t−1/β → 0?
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Motivation 2: heat kernel under inverse subordination

p(t, x, y) is the Gauss heat kernel, and St is a β-stable
subordinator.

It seems impossible to expect explicit formula for
E p(S−1

t , x, y), i.e. the heat kernel of WS−1
t

(Note:
non-Markovian).

Q2: asymptotics for E p(S−1
t , x, y)?
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Motivation 3: fractional in both space and time

Consider
∂βu

∂tβ
= −(−∆)γu,

where β, γ ∈ (0, 1).

Q3: asymptotics for the heat kernel?
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Main result

Consider the fundamental solution p(t, x, y) to

∂βu

∂tβ
= −(−∆)γu.

Theorem (D.-Schilling, 2019+)

(1) As |x− y|−2γ/βt→∞, p(t, x, y) is equivalent to

Γ
(

1
2γ

)
Γ
(
1− 1

2γ

)
2πγΓ

(
1− β

2γ

) t−β/(2γ), d = 1 & γ ∈ (1
2
, 1),

β

πΓ(1− β)
t−β log

[
|x− y|−1/βt

]
, d = 1 & γ = 1

2
,

2γΓ
(
d−2γ

2

)
21+2γπd/2Γ(1− β)Γ(1 + γ)

|x− y|2γ−dt−β, d > 2γ & γ ∈ (0, 1).
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Main result

Consider the fundamental solution p(t, x, y) to

∂βu

∂tβ
= −(−∆)γu.

Theorem (D.-Schilling, 2019+)

(1) As |x− y|−2γ/βt→∞, p(t, x, y) is equivalent to

Γ
(

1
2γ

)
Γ
(
1− 1

2γ

)
2πγΓ

(
1− β

2γ

) t−β/(2γ), d = 1 & γ ∈ (1
2
, 1),

β

πΓ(1− β)
t−β log

[
|x− y|−1/βt

]
, d = 1 & γ = 1

2
,

2γΓ
(
d−2γ

2

)
21+2γπd/2Γ(1− β)Γ(1 + γ)

|x− y|2γ−dt−β, d > 2γ & γ ∈ (0, 1).

"�t (ÉÇ�Æ) ()Asymptotic Formulas for the Heat Kernels of Space and Time Fractional Equations@3��Æ 2019c7� 15 / 27



Main result

Consider the fundamental solution p(t, x, y) to
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= −(−∆)γu.

Theorem (cont.)

(2) As |x− y|−2γ/βt→ 0,

p(t, x, y) ∼
γ4γΓ

(
d
2

+ γ
)

πd/2Γ(1− γ)βΓ(β)
|x− y|−d−2γtβ.
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General framework

Let p(t, x, y) be a heat kernel on a metric space (M,ρ)

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M,

where d, α, C1, C2 > 0 and F : [0,∞)→ (0,∞) is ↓.

Typical examples of F are

F (r) = exp
[
−rα/(α−1)

]
with some α ≥ 2, (F)

F (r) = (1 + r2)−(d+α)/2 with some α > 0. (FF)

Indeed, under some conditions, Grigor’yan-Kumagai (2008),

p(t, x, y) � C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
,

where F is of the form either (F) or (FF).
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Related results

When

p(t, x, y) � C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
,

Z.-Q. Chen-P. Kim-T. Kumagai-J. Wang (2018) derived two-sided
estimates for E p(S−1

t , x, y).

Related fractional SPDE (M. Foodun, E. Nane, R. Sun, · · · ):

∂βu

∂tβ
= −(−∆)γu+ σ(u)Ẇ (t, x),

where Ẇ (t, x) is a space-time white noise.
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Typical examples

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M.

Gauss heat kernel

p(t, x, y) =
1

(4πt)d/2
exp

[
−|x− y|

2

4t

]
.

Poisson kernel

p(t, x, y) =
c(d)

td

(
1 +
|x− y|2

t2

)−(d+1)/2

.

Symmetric α-stable Lévy process:

p(t, |x− y|) =
1

td/α
p

(
1,
|x− y|
t1/α

)
.
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Our framework

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M.

Let Xt be the Markov process on M associated with p(t, x, y),
and denote by L the generator.

Let St be an independent β-stable subordinator.

Our aim: E p(St, x, y) and E p(S−1
t , x, y).

They are the fundamental solutions to

∂u

∂t
= −(−L)βu

and
∂βu

∂tβ
= Lu,

respectively.
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∂u
∂t = −(−L)βu

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M.

Theorem

(1) As ρ(x, y)t−1/(αβ) →∞,

E p(St, x, y) ∼ C1αβ

Γ(1− β)
C−d−αβ2

∫ ∞
0

sd+αβ−1F (s) ds·ρ(x, y)−d−αβt.

(2) As ρ(x, y)t−1/(αβ) → 0,

E p(St, x, y) ∼ C1F (0+)
Γ
(

d
αβ

)
βΓ
(
d
α

) t−d/(αβ).
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Asymptotics for ∂βu
∂tβ

= Lu

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M.

Theorem

(1) As ρ(x, y)−α/βt→∞, E p(S−1
t , x, y) is equivalent to

C1F (0+)
Γ(1− d

α)
Γ(1−βd

α )
t−βd/α, if d < α,

C1β
Γ(1−β)

F (0+) t−β log
[
ρ(x, y)−α/βt

]
, if d = α,

C1C
α−d
2 α

Γ(1−β)

∫∞
0
sd−α−1F (s)ds · ρ(x, y)α−dt−β, if d > α.
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Asymptotics for ∂βu
∂tβ

= Lu

p(t, x, y) =
C1

td/α
F

(
C2
ρ(x, y)

t1/α

)
, t > 0, x, y ∈M.

Theorem

(2) Let ρ(x, y)−α/βt→ 0.
If p(t, x, y) is of jump type, then

E p(S−1
t , x, y) ∼ C1C

−d−α
2

βΓ(β)
ρ(x, y)−d−αtβ.

If p(t, x, y) is of diffusion type, then

E p(S−1
t , x, y) ∼ K1ρ(x, y)−

d(1−β)
α−β t−

d(α−1)β
α(α−β) exp

[
−K2ρ(x, y)

α
α−β t−

β
α−β

]
,

where Ki = Ki(d, α, β) > 0 are explicitly given (omitted here).
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where Ki = Ki(d, α, β) > 0 are explicitly given (omitted here).
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Idea of the proofs

E p(St, x, y) =

∫ ∞
0

p(s, x, y)P(St ∈ ds).

E p(S−1
t , x, y) =

∫ ∞
0

p(s, x, y)P
(
S−1
t ∈ ds

)
.

♠ Asymptotic for the density of stable subordinator:

P(S1 ∈ ds)

ds
∼


C1(β) s−

2−β
2(1−β) exp

[
−C2(β) s−

β
1−β

]
, as s→ 0,

β

Γ(1− β)
s−β−1, as s→∞.
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Technique from asymptotic analysis

Asymptotic formula (Laplace method/ Tauberian theorem)

If h ≥ 0 has a unique local minimum point at r0 ∈ (0,∞)
and h′′(r0) > 0,∫ ∞

0

e−Ch(r) dr ∼ e−Ch(r0)

√
2π

Ch′′(r0)
as C →∞.

"�t (ÉÇ�Æ) ()Asymptotic Formulas for the Heat Kernels of Space and Time Fractional Equations@3��Æ 2019c7� 25 / 27



Possible extension/ Future work

∂u

∂t
= ∆u −−−→ ∂βu

∂tβ
= −(−∆)γu

√
Finished

−−−→ ∂βu

∂tβ
= −φ(−∆)u ...?

where φ is the so-called Bernstein function.

♠ Asymptotic expansion?
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The end

Thanks for Your Attention!

"�t (ÉÇ�Æ) ()Asymptotic Formulas for the Heat Kernels of Space and Time Fractional Equations@3��Æ 2019c7� 27 / 27


