Asymptotic Formulas for the Heat Kernels of Space and Time Fractional Equations

@吉林大学 2019年7月

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月

1 / 27

Mainly based on a joint work with Rene Schilling (TU Dresden, Germany): arXiv:1803.11435

- 1. Background and motivation
- 2. Main results
- 3. Basic idea of the proofs

• Recall the classical heat equation on \mathbb{R}^d

$$\frac{\partial u}{\partial t} = \Delta u.$$

• Its fundamental solution is given by the Gauss kernal

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x - y|^2}{4t}\right], \quad t > 0, \, x, y \in \mathbb{R}^d.$$

• d-dimensional Brownian motion generated by Δ .

• Recall the classical heat equation on \mathbb{R}^d

$$\frac{\partial u}{\partial t} = \Delta u.$$

• Its fundamental solution is given by the Gauss kernal

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x - y|^2}{4t}\right], \quad t > 0, \, x, y \in \mathbb{R}^d.$$

• d-dimensional Brownian motion generated by Δ .

邓昌松 (武汉大学)

• Recall the classical heat equation on \mathbb{R}^d

$$\frac{\partial u}{\partial t} = \Delta u.$$

• Its fundamental solution is given by the Gauss kernal

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x-y|^2}{4t}\right], \quad t > 0, \, x, y \in \mathbb{R}^d.$$

• d-dimensional Brownian motion generated by Δ .

邓昌松 (武汉大学)

• The non-local heat equation (0 < β < 1) $\frac{\partial u}{\partial t} = -(-\Delta)^{\beta}u.$

• 2β -stable Lévy process W_{S_t} .

Here S_t is an independent β -stable subordinator with $\mathbb{E} e^{-rS_t} = e^{-tr^{\beta}}, \quad r > 0, t \ge 0.$

• By independence, the heat kernel is $\mathbb{E}\,p(S_t,x,y)=\int_0^\infty p(s,x,y)\,\mathbb{P}(S_t\in\mathrm{d} s).$

- The non-local heat equation (0 < β < 1) $\frac{\partial u}{\partial t} = -(-\Delta)^{\beta} u.$
- 2β -stable Lévy process W_{S_t} .

Here S_t is an independent β -stable subordinator with $\mathbb{E} e^{-rS_t} = e^{-tr^{\beta}}, \quad r > 0, t \ge 0.$

• By independence, the heat kernel is $\mathbb{E} p(S_t, x, y) = \int_0^\infty p(s, x, y) \mathbb{P}(S_t \in \mathrm{d}s).$

- The non-local heat equation (0 < β < 1) $\frac{\partial u}{\partial t} = -(-\Delta)^{\beta} u.$
- 2β -stable Lévy process W_{S_t} .

Here S_t is an independent β -stable subordinator with $\mathbb{E} e^{-rS_t} = e^{-tr^{\beta}}, \quad r > 0, t \ge 0.$

• By independence, the heat kernel is $\mathbb{E} p(S_t, x, y) = \int_0^\infty p(s, x, y) \mathbb{P}(S_t \in \mathrm{d}s).$

- The non-local heat equation (0 < β < 1) $\frac{\partial u}{\partial t} = -(-\Delta)^{\beta} u.$
- 2β -stable Lévy process W_{S_t} .

Here S_t is an independent β -stable subordinator with $\mathbb{E} e^{-rS_t} = e^{-tr^{\beta}}, \quad r > 0, t \ge 0.$

• By independence, the heat kernel is $\mathbb{E} \, p(S_t,x,y) = \int_0^\infty p(s,x,y) \, \mathbb{P}(S_t \in \mathrm{d} s).$

2019年7月

Time-fractional equation

Time-fractional heat equation ($0 < \beta < 1$)

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

Here $\frac{\partial^{\beta}}{\partial t^{\beta}}$ is the Caputo derivative:

$$\frac{\partial^{\beta} f(t)}{\partial t^{\beta}} = \frac{\mathrm{d}}{\mathrm{d}t} I^{1-\beta} \big(f - f(0) \big)(t).$$

The Riemann-Liouville integral operator:

$$I^{\beta}f(t) = \frac{1}{\Gamma(\beta)} \int_0^t \frac{f(s)}{(t-s)^{1-\beta}} \,\mathrm{d}s.$$

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

Here $\frac{\partial^{\beta}}{\partial t^{\beta}}$ is the Caputo derivative:

$$\frac{\partial^{\beta} f(t)}{\partial t^{\beta}} = \frac{\mathrm{d}}{\mathrm{d}t} I^{1-\beta} \big(f - f(0) \big)(t).$$

The Riemann-Liouville integral operator:

$$I^{\beta}f(t) = \frac{1}{\Gamma(\beta)} \int_0^t \frac{f(s)}{(t-s)^{1-\beta}} \,\mathrm{d}s.$$

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

Here $\frac{\partial^{\beta}}{\partial t^{\beta}}$ is the Caputo derivative:

$$\frac{\partial^{\beta} f(t)}{\partial t^{\beta}} = \frac{\mathrm{d}}{\mathrm{d}t} I^{1-\beta} \big(f - f(0) \big)(t).$$

The Riemann-Liouville integral operator:

$$I^{\beta}f(t) = \frac{1}{\Gamma(\beta)} \int_0^t \frac{f(s)}{(t-s)^{1-\beta}} \,\mathrm{d}s.$$

 $\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$

• Corresponding process $W_{S_t^{-1}}$.

$$S_t^{-1} := \inf \{ s \ge 0 : S_s > t \}, \quad t \ge 0.$$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

 $ullet \; S_t^{-1}$ is the scaling limit of a renewal process.

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• Corresponding process $W_{S_t^{-1}}$.

 $S_t^{-1} := \inf \left\{ s \ge 0 \ : \ S_s > t \right\}, \quad t \ge 0.$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

 $ullet \, S_t^{-1}$ is the scaling limit of a renewal process.

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• Corresponding process $W_{S_t^{-1}}$.

$$S_t^{-1} := \inf \{ s \ge 0 : S_s > t \}, \quad t \ge 0.$$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

 $ullet \; S_t^{-1}$ is the scaling limit of a renewal process.

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• Corresponding process $W_{S_t^{-1}}$.

$$S_t^{-1} := \inf \{ s \ge 0 : S_s > t \}, \quad t \ge 0.$$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

• S_t^{-1} is the scaling limit of a renewal process.

6 / 27

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• Corresponding process $W_{S_t^{-1}}$.

$$S_t^{-1} := \inf \{ s \ge 0 : S_s > t \}, \quad t \ge 0.$$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

• S_t^{-1} is the scaling limit of a renewal process.

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• Corresponding process $W_{S_t^{-1}}$.

$$S_t^{-1} := \inf \{ s \ge 0 : S_s > t \}, \quad t \ge 0.$$

Meerschaert & Scheffler, 2004, JAP

Z.-Q. Chen, 2017, Chaos, Solitons and Fractals

• S_t^{-1} is the scaling limit of a renewal process.

2019年7月

- $W_t \stackrel{\mathrm{d}}{=} t^{1/2} W_1$ $W_{S_t} \stackrel{\mathrm{d}}{=} t^{1/(2\beta)} W_{S_1}$
- $W_{S_{*}^{-1}} \stackrel{d}{=} t^{\beta/2} W_{S_{1}^{-1}}$ (subdiffusion, slow diffusion)

2019年7月

- $W_t \stackrel{\mathsf{d}}{=} t^{1/2} W_1$ $W_{S_t} \stackrel{\mathsf{d}}{=} t^{1/(2\beta)} W_{S_1}$
- $W_{S_{\star}^{-1}} \stackrel{\mathrm{d}}{=} t^{\beta/2} W_{S_{\star}^{-1}}$ (subdiffusion, slow diffusion)

• $W_t \stackrel{\mathsf{d}}{=} t^{1/2} W_1$ $W_{S_t} \stackrel{\mathsf{d}}{=} t^{1/(2\beta)} W_{S_1}$

• $W_{S_{\star}^{-1}} \stackrel{\mathrm{d}}{=} t^{\beta/2} W_{S_{\star}^{-1}}$ (subdiffusion, slow diffusion)

2019年7月 7 / 27

- $W_t \stackrel{\mathsf{d}}{=} t^{1/2} W_1$ $W_{S_t} \stackrel{\mathsf{d}}{=} t^{1/(2\beta)} W_{S_1}$
- $W_{S_t^{-1}} \stackrel{\mathrm{d}}{=} t^{\beta/2} W_{S_1^{-1}}$ (subdiffusion, slow diffusion)

2019年7月

- $W_t \stackrel{\mathsf{d}}{=} t^{1/2} W_1$ $W_{S_t} \stackrel{\mathsf{d}}{=} t^{1/(2\beta)} W_{S_1}$
- $W_{S_t^{-1}} \stackrel{d}{=} t^{\beta/2} W_{S_1^{-1}}$ (subdiffusion, slow diffusion)

A sample path (by Jin-Kobayashi, 2019)

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月

8 / 27

• Time-fractional equation (0 < eta < 1) $rac{\partial^{eta} u}{\partial t^{eta}} = \Delta u.$

• The heat kernel is

$$\mathbb{E} p(S_t^{-1}, x, y) = \int_0^\infty p(s, x, y) \mathbb{P} \left(S_t^{-1} \in \mathrm{d}s \right).$$

邓昌松 (武汉大学)

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \Delta u.$$

• The heat kernel is

$$\mathbb{E} p(S_t^{-1}, x, y) = \int_0^\infty p(s, x, y) \mathbb{P} \left(S_t^{-1} \in \mathrm{d}s \right).$$

邓昌松 (武汉大学)

$$egin{aligned} extsf{PDE} & extsf{Heat Kernel} & extsf{Process} \ \partial_t u &= \Delta u & p(t,x,y) & W_t \ \partial_t u &= -(-\Delta)^eta u & \mathbb{E}\,p(S_t,x,y) & W_{S_t} \ \partial_t^eta u &= \Delta u & \mathbb{E}\,p(S_t^{-1},x,y) & W_{S_t^{-1}} \ \partial_t^eta u &= -(-\Delta)^\gamma u & \mathbb{E}\,p(T_{S_t^{-1}},x,y) & W_{T_{S_t^{-1}}} \end{aligned}$$

э

• p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.

• When
$$\beta = 1/2$$
,

$$\mathbb{E} p(S_t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}$$

• If $\beta \neq 1/2$, NO explicit formula for $\mathbb{E} p(S_t, x, y)!!!$

• A natural question: asymptotic formula?

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- When $\beta = 1/2$,

$$\mathbb{E} p(S_t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}.$$

• If $\beta \neq 1/2$, NO explicit formula for $\mathbb{E} p(S_t, x, y)!!!$

• A natural question: asymptotic formula?

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- \bullet When $\beta=1/2$,

$$\mathbb{E} p(S_t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}$$

- If $\beta \neq 1/2$, NO explicit formula for $\mathbb{E} p(S_t, x, y)!!!$
- A natural question: asymptotic formula?

.

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- \bullet When $\beta=1/2$,

$$\mathbb{E} p(S_t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}$$

• If $\beta \neq 1/2$, NO explicit formula for $\mathbb{E} p(S_t, x, y)!!!$

• A natural question: asymptotic formula?

.

• It is known that as $|x-y|^2 t^{-1/\beta} \to \infty$,

$$\mathbb{E}p(S_t, x, y) \sim \frac{c(d, \beta)t}{(|x - y|^2 + t^{1/\beta})^{(d+2\beta)/2}}.$$

Pólya, 1923, d = 1Blumenthal and Getoor, 1960, general $d \ge 1$ Tool: Bessel function

A. Bendikov, 1994, a quite elegant proof Tool: Bochner's subordination

• Q1: asymptotics as $|x - y|^2 t^{-1/\beta} \rightarrow 0$?

• It is known that as $|x-y|^2 t^{-1/eta}
ightarrow \infty$,

$$\mathbb{E}p(S_t, x, y) \sim \frac{c(d, \beta)t}{(|x - y|^2 + t^{1/\beta})^{(d + 2\beta)/2}}.$$

Pólya, 1923, d = 1Blumenthal and Getoor, 1960, general $d \ge 1$ Tool: Bessel function

A. Bendikov, 1994, a quite elegant proof Tool: Bochner's subordination

• Q1: asymptotics as $|x - y|^2 t^{-1/\beta} \rightarrow 0$?

• It is known that as $|x-y|^2t^{-1/eta}
ightarrow\infty$,

$$\mathbb{E}p(S_t, x, y) \sim \frac{c(d, \beta)t}{(|x - y|^2 + t^{1/\beta})^{(d + 2\beta)/2}}.$$

Pólya, 1923,
$$d = 1$$

Blumenthal and Getoor, 1960, general $d \ge 1$
Tool: Bessel function

A. Bendikov, 1994, a quite elegant proof Tool: Bochner's subordination

• Q1: asymptotics as $|x - y|^2 t^{-1/\beta} \rightarrow 0$?

邓昌松 (武汉大学)

• It is known that as $|x-y|^2t^{-1/eta}
ightarrow\infty$,

$$\mathbb{E}p(S_t, x, y) \sim \frac{c(d, \beta)t}{(|x - y|^2 + t^{1/\beta})^{(d + 2\beta)/2}}.$$

Pólya, 1923,
$$d = 1$$

Blumenthal and Getoor, 1960, general $d \ge 1$
Tool: Bessel function

A. Bendikov, 1994, a quite elegant proofTool: Bochner's subordination

• Q1: asymptotics as $|x - y|^2 t^{-1/\beta} \rightarrow 0$?

• It is known that as $|x-y|^2t^{-1/eta}
ightarrow\infty$,

$$\mathbb{E}p(S_t, x, y) \sim \frac{c(d, \beta)t}{(|x - y|^2 + t^{1/\beta})^{(d + 2\beta)/2}}.$$

Pólya, 1923,
$$d = 1$$

Blumenthal and Getoor, 1960, general $d \ge 1$
Tool: Bessel function

A. Bendikov, 1994, a quite elegant proofTool: Bochner's subordination

• Q1: asymptotics as
$$|x - y|^2 t^{-1/\beta} \rightarrow 0$$
?
Motivation 2: heat kernel under inverse subordination

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- It seems impossible to expect explicit formula for $\mathbb{E} p(S_t^{-1}, x, y)$, i.e. the heat kernel of $W_{S_t^{-1}}$ (Note: non-Markovian).
- Q2: asymptotics for $\mathbb{E} p(S_t^{-1}, x, y)$?

Motivation 2: heat kernel under inverse subordination

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- It seems impossible to expect explicit formula for $\mathbb{E} p(S_t^{-1}, x, y)$, i.e. the heat kernel of $W_{S_t^{-1}}$ (Note: non-Markovian).
- Q2: asymptotics for $\mathbb{E} p(S_t^{-1}, x, y)$?

Motivation 2: heat kernel under inverse subordination

- p(t, x, y) is the Gauss heat kernel, and S_t is a β -stable subordinator.
- It seems impossible to expect explicit formula for $\mathbb{E} p(S_t^{-1}, x, y)$, i.e. the heat kernel of $W_{S_t^{-1}}$ (Note: non-Markovian).
- Q2: asymptotics for $\mathbb{E} p(S_t^{-1}, x, y)$?

Motivation 3: fractional in both space and time

Consider
$$rac{\partial^{eta} u}{\partial t^{eta}} = -(-\Delta)^{\gamma} u,$$
 where $eta, \gamma \in (0, 1).$

Q3: asymptotics for the heat kernel?

Consider
$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u,$$
where $\beta, \gamma \in (0, 1).$

Q3: asymptotics for the heat kernel?

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

Theorem (D.-Schilling, 2019+

(1) As $|x-y|^{-2\gamma/\beta}t \to \infty$, p(t,x,y) is equivalent to

$$\begin{cases} \frac{\Gamma\left(\frac{1}{2\gamma}\right)\Gamma\left(1-\frac{1}{2\gamma}\right)}{2\pi\gamma\Gamma\left(1-\frac{\beta}{2\gamma}\right)} t^{-\beta/(2\gamma)}, & d=1 \ \& \ \gamma \in \left(\frac{1}{2},1\right), \\ \frac{\beta}{\pi\Gamma(1-\beta)} t^{-\beta}\log\left[|x-y|^{-1/\beta}t\right], & d=1 \ \& \ \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma\left(\frac{d-2\gamma}{2}\right)}{2^{1+2\gamma}\pi^{d/2}\Gamma(1-\beta)\Gamma(1+\gamma)} |x-y|^{2\gamma-d}t^{-\beta}, & d>2\gamma \ \& \ \gamma \in (0,1) \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

(1) As
$$|x - y|^{-2\gamma/\beta}t \to \infty$$
, $p(t, x, y)$ is equivalent to

$$\begin{cases} \frac{\Gamma(\frac{1}{2\gamma})\Gamma(1 - \frac{1}{2\gamma})}{2\pi\gamma\Gamma(1 - \frac{\beta}{2\gamma})}t^{-\beta/(2\gamma)}, & d = 1 \& \gamma \in (\frac{1}{2}, 1), \\ \frac{\beta}{\pi\Gamma(1 - \beta)}t^{-\beta}\log\left[|x - y|^{-1/\beta}t\right], & d = 1 \& \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma(\frac{d-2\gamma}{2})}{2^{1+2\gamma}\pi^{d/2}\Gamma(1 - \beta)\Gamma(1 + \gamma)}|x - y|^{2\gamma-d}t^{-\beta}, \quad d > 2\gamma \& \gamma \in (0, 1). \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

(1) As
$$|x-y|^{-2\gamma/\beta}t \to \infty$$
, $p(t, x, y)$ is equivalent to

$$\begin{cases} \frac{\Gamma\left(\frac{1}{2\gamma}\right)\Gamma\left(1-\frac{1}{2\gamma}\right)}{2\pi\gamma\Gamma\left(1-\frac{\beta}{2\gamma}\right)}t^{-\beta/(2\gamma)}, & d = 1 \ \& \ \gamma \in \left(\frac{1}{2}, 1\right), \\ \frac{\beta}{\pi\Gamma(1-\beta)}t^{-\beta}\log\left[|x-y|^{-1/\beta}t\right], & d = 1 \ \& \ \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma\left(\frac{d-2\gamma}{2}\right)}{2^{1+2\gamma}\pi^{d/2}\Gamma(1-\beta)\Gamma(1+\gamma)}|x-y|^{2\gamma-d}t^{-\beta}, & d > 2\gamma \ \& \ \gamma \in (0,1). \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

(1) As
$$|x-y|^{-2\gamma/\beta}t \to \infty$$
, $p(t, x, y)$ is equivalent to

$$\begin{cases} \frac{\Gamma\left(\frac{1}{2\gamma}\right)\Gamma\left(1-\frac{1}{2\gamma}\right)}{2\pi\gamma\Gamma\left(1-\frac{\beta}{2\gamma}\right)}t^{-\beta/(2\gamma)}, & d = 1 \& \gamma \in \left(\frac{1}{2}, 1\right), \\ \frac{\beta}{\pi\Gamma(1-\beta)}t^{-\beta}\log\left[|x-y|^{-1/\beta}t\right], & d = 1 \& \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma\left(\frac{d-2\gamma}{2}\right)}{2^{1+2\gamma}\pi^{d/2}\Gamma(1-\beta)\Gamma(1+\gamma)}|x-y|^{2\gamma-d}t^{-\beta}, \quad d > 2\gamma \& \gamma \in (0,1). \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

(1) As
$$|x-y|^{-2\gamma/\beta}t \to \infty$$
, $p(t, x, y)$ is equivalent to

$$\begin{cases} \frac{\Gamma\left(\frac{1}{2\gamma}\right)\Gamma\left(1-\frac{1}{2\gamma}\right)}{2\pi\gamma\Gamma\left(1-\frac{\beta}{2\gamma}\right)}t^{-\beta/(2\gamma)}, & d = 1 \& \gamma \in \left(\frac{1}{2}, 1\right), \\ \frac{\beta}{\pi\Gamma(1-\beta)}t^{-\beta}\log\left[|x-y|^{-1/\beta}t\right], & d = 1 \& \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma\left(\frac{d-2\gamma}{2}\right)}{2^{1+2\gamma}\pi^{d/2}\Gamma(1-\beta)\Gamma(1+\gamma)}|x-y|^{2\gamma-d}t^{-\beta}, \quad d > 2\gamma \& \gamma \in (0,1). \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$rac{\partial^eta u}{\partial t^eta} = -(-\Delta)^\gamma u.$$

(1) As
$$|x-y|^{-2\gamma/\beta}t \to \infty$$
, $p(t,x,y)$ is equivalent to

$$\begin{cases} \frac{\Gamma\left(\frac{1}{2\gamma}\right)\Gamma\left(1-\frac{1}{2\gamma}\right)}{2\pi\gamma\Gamma\left(1-\frac{\beta}{2\gamma}\right)}t^{-\beta/(2\gamma)}, & d=1 \ \& \ \gamma \in \left(\frac{1}{2},1\right), \\ \frac{\beta}{\pi\Gamma(1-\beta)}t^{-\beta}\log\left[|x-y|^{-1/\beta}t\right], & d=1 \ \& \ \gamma = \frac{1}{2}, \\ \frac{2\gamma\Gamma\left(\frac{d-2\gamma}{2}\right)}{2^{1+2\gamma}\pi^{d/2}\Gamma(1-\beta)\Gamma(1+\gamma)}|x-y|^{2\gamma-d}t^{-\beta}, \quad d>2\gamma \ \& \ \gamma \in (0,1). \end{cases}$$

Consider the fundamental solution p(t, x, y) to

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u.$$

Theorem (cont.) 2) As $|x - y|^{-2\gamma/\beta} t \to 0$, $p(t, x, y) \sim \frac{\gamma 4^{\gamma} \Gamma(\frac{d}{2} + \gamma)}{\pi^{d/2} \Gamma(1 - \gamma) \beta \Gamma(\beta)} |x - y|^{-d - 2\gamma} t^{\beta}$.

邓昌松 (武汉大学)

通 ト イヨ ト イヨ ト

Consider the fundamental solution p(t, x, y) to

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u.$$

Theorem (cont.)

(2) As
$$|x - y|^{-2\gamma/\beta} t \to 0$$
,
 $p(t, x, y) \sim \frac{\gamma 4^{\gamma} \Gamma(\frac{d}{2} + \gamma)}{\pi^{d/2} \Gamma(1 - \gamma) \beta \Gamma(\beta)} |x - y|^{-d - 2\gamma} t^{\beta}.$

Consider the fundamental solution p(t, x, y) to

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u.$$

Theorem (cont.)

(2) As
$$|x-y|^{-2\gamma/\beta}t \to 0$$
,
 $p(t,x,y) \sim \frac{\gamma 4^{\gamma} \Gamma(\frac{d}{2}+\gamma)}{\pi^{d/2} \Gamma(1-\gamma)\beta \Gamma(\beta)} |x-y|^{-d-2\gamma} t^{\beta}$

邓昌松 (武汉大学)

.

General framework

• Let p(t, x, y) be a heat kernel on a metric space (M, ρ) $p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M,$

where $d, \alpha, C_1, C_2 > 0$ and $F : [0, \infty) \to (0, \infty)$ is \downarrow .

• Typical examples of F are

$$F(r) = \exp\left[-r^{\alpha/(\alpha-1)}\right] \quad \text{with some } \alpha \ge 2, \qquad (\bigstar)$$
$$F(r) = (1+r^2)^{-(d+\alpha)/2} \quad \text{with some } \alpha > 0. \qquad (\bigstar\bigstar)$$

Indeed, under some conditions, Grigor'yan-Kumagai (2008),

$$p(t, x, y) \approx \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right)$$

where F is of the form either (\bigstar) or $(\bigstar\bigstar)$.

17 / 27

General framework

• Let p(t,x,y) be a heat kernel on a metric space (M,ρ)

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M,$$

where $d, \alpha, C_1, C_2 > 0$ and $F : [0, \infty) \to (0, \infty)$ is \downarrow .

• Typical examples of F are

$$F(r) = \exp\left[-r^{\alpha/(\alpha-1)}\right] \quad \text{with some } \alpha \ge 2, \qquad (\bigstar)$$
$$F(r) = (1+r^2)^{-(d+\alpha)/2} \quad \text{with some } \alpha > 0. \qquad (\bigstar\bigstar)$$

• Indeed, under some conditions, Grigor'yan-Kumagai (2008),

$$p(t, x, y) \approx \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right)$$

where F is of the form either (\bigstar) or $(\bigstar\bigstar)$.

17 / 27

General framework

• Let p(t,x,y) be a heat kernel on a metric space (M,ρ)

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M,$$

where $d, \alpha, C_1, C_2 > 0$ and $F : [0, \infty) \to (0, \infty)$ is \downarrow .

• Typical examples of F are

$$\begin{split} F(r) &= \exp\left[-r^{\alpha/(\alpha-1)}\right] & \text{with some } \alpha \ge 2, \qquad (\bigstar) \\ F(r) &= (1+r^2)^{-(d+\alpha)/2} & \text{with some } \alpha > 0. \qquad (\bigstar\bigstar) \end{split}$$

• Indeed, under some conditions, Grigor'yan-Kumagai (2008),

$$p(t, x, y) \approx \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right),$$

where F is of the form either (\bigstar) or $(\bigstar\bigstar)$.

When

$$p(t, x, y) \asymp \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right),$$

Z.-Q. Chen-P. Kim-T. Kumagai-J. Wang (2018) derived two-sided estimates for $\mathbb{E} p(S_t^{-1}, x, y)$.

Related fractional SPDE (M. Foodun, E. Nane, R. Sun, ···):

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u + \sigma(u) \dot{W}(t,x),$$

where W(t, x) is a space-time white noise.

When

$$p(t, x, y) \asymp \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right),$$

Z.-Q. Chen-P. Kim-T. Kumagai-J. Wang (2018) derived two-sided estimates for $\mathbb{E} p(S_t^{-1}, x, y)$.

Related fractional SPDE (M. Foodun, E. Nane, R. Sun, ···):

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = -(-\Delta)^{\gamma} u + \sigma(u) \dot{W}(t,x),$$

where $\dot{W}(t,x)$ is a space-time white noise.

Typical examples

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

• Gauss heat kernel

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x-y|^2}{4t}\right].$$

Poisson kernel

$$p(t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}$$

• Symmetric α -stable Lévy process:

$$p(t, |x-y|) = \frac{1}{t^{d/\alpha}} p\left(1, \frac{|x-y|}{t^{1/\alpha}}\right)$$

@吉林大学 2019年7月

19 / 27

э

Typical examples

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Gauss heat kernel

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x-y|^2}{4t}\right].$$

Poisson kernel

$$p(t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}.$$

• Symmetric α -stable Lévy process:

$$p(t, |x-y|) = \frac{1}{t^{d/\alpha}} p\left(1, \frac{|x-y|}{t^{1/\alpha}}\right)$$

19 / 27

Typical examples

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Gauss heat kernel

$$p(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left[-\frac{|x-y|^2}{4t}\right].$$

Poisson kernel

$$p(t, x, y) = \frac{c(d)}{t^d} \left(1 + \frac{|x - y|^2}{t^2} \right)^{-(d+1)/2}$$

• Symmetric α -stable Lévy process:

$$p(t, |x - y|) = \frac{1}{t^{d/\alpha}} p\left(1, \frac{|x - y|}{t^{1/\alpha}}\right)$$

@ 吉林大学 2019年7月

19 / 27

•

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

- Let X_t be the Markov process on M associated with p(t, x, y), and denote by \mathcal{L} the generator.
- Let S_t be an independent β -stable subordinator.
- Our aim: $\mathbb{E} p(S_t, x, y)$ and $\mathbb{E} p(S_t^{-1}, x, y)$.
- They are the fundamental solutions to

$$\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$$

and

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u,$$

respectively

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

- Let X_t be the Markov process on M associated with p(t, x, y), and denote by \mathcal{L} the generator.
- Let S_t be an independent β -stable subordinator.
- Our aim: $\mathbb{E} p(S_t, x, y)$ and $\mathbb{E} p(S_t^{-1}, x, y)$.
- They are the fundamental solutions to

$$\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$$

and

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u,$$

respectively

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

- Let X_t be the Markov process on M associated with p(t, x, y), and denote by \mathcal{L} the generator.
- Let S_t be an independent β -stable subordinator.
- Our aim: $\mathbb{E} p(S_t, x, y)$ and $\mathbb{E} p(S_t^{-1}, x, y)$.
- They are the fundamental solutions to

$$\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$$

and

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u,$$

respectively

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

- Let X_t be the Markov process on M associated with p(t, x, y), and denote by \mathcal{L} the generator.
- Let S_t be an independent β -stable subordinator.
- Our aim: $\mathbb{E} p(S_t, x, y)$ and $\mathbb{E} p(S_t^{-1}, x, y)$.
- They are the fundamental solutions to

$$\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$$

and

$$\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u,$$

respectively.

 $\tfrac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$

$$p(t,x,y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x,y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(1) As
$$\rho(x, y)t^{-1/(\alpha\beta)} \to \infty$$
,

$$\mathbb{E} p(S_t, x, y) \sim \frac{C_1 \alpha \beta}{\Gamma(1-\beta)} C_2^{-d-\alpha\beta} \int_0^\infty s^{d+\alpha\beta-1} F(s) \, \mathrm{d} s \cdot \rho(x, y)^{-d-\alpha\beta} t.$$

(2) As $\rho(x, y)t^{-1/(\alpha\beta)} \to 0$,

$$\mathbb{E} p(S_t, x, y) \sim C_1 F(0+) \frac{\Gamma\left(\frac{d}{\alpha\beta}\right)}{\beta \Gamma\left(\frac{d}{\alpha}\right)} t^{-d/(\alpha\beta)}$$

 $\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$

$$p(t,x,y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x,y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(1) As
$$ho(x,y)t^{-1/(lphaeta)}
ightarrow\infty$$
,

$$\mathbb{E} p(S_t, x, y) \sim \frac{C_1 \alpha \beta}{\Gamma(1-\beta)} C_2^{-d-\alpha\beta} \int_0^\infty s^{d+\alpha\beta-1} F(s) \, \mathrm{d} s \cdot \rho(x, y)^{-d-\alpha\beta} t.$$

(2) As $\rho(x, y)t^{-1/(\alpha\beta)} \to 0$,

$$\mathbb{E} p(S_t, x, y) \sim C_1 F(0+) \frac{\Gamma\left(\frac{d}{\alpha\beta}\right)}{\beta \Gamma\left(\frac{d}{\alpha}\right)} t^{-d/(\alpha\beta)}$$

 $\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$

$$p(t,x,y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x,y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(1) As
$$\rho(x,y)t^{-1/(\alpha\beta)} \to \infty$$
,

$$\mathbb{E} p(S_t, x, y) \sim \frac{C_1 \alpha \beta}{\Gamma(1-\beta)} C_2^{-d-\alpha\beta} \int_0^\infty s^{d+\alpha\beta-1} F(s) \, \mathrm{d} s \cdot \rho(x, y)^{-d-\alpha\beta} t.$$

(2) As $\rho(x, y)t^{-1/(\alpha\beta)} \to 0$,

$$\mathbb{E} p(S_t, x, y) \sim C_1 F(0+) \frac{\Gamma\left(\frac{d}{\alpha\beta}\right)}{\beta \Gamma\left(\frac{d}{\alpha}\right)} t^{-d/(\alpha\beta)}.$$

 $\frac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(1) As
$$\rho(x,y)t^{-1/(\alpha\beta)} \to \infty$$
,

$$\mathbb{E} p(S_t, x, y) \sim \frac{C_1 \alpha \beta}{\Gamma(1-\beta)} C_2^{-d-\alpha\beta} \int_0^\infty s^{d+\alpha\beta-1} F(s) \, \mathrm{d} s \cdot \rho(x, y)^{-d-\alpha\beta} t.$$

(2) As
$$\rho(x, y)t^{-1/(\alpha\beta)} \to 0$$
,

$$\mathbb{E} p(S_t, x, y) \sim C_1 F(0+) \frac{\Gamma\left(\frac{d}{\alpha\beta}\right)}{\beta \Gamma\left(\frac{d}{\alpha}\right)} t^{-d/(\alpha\beta)}$$

 $\tfrac{\partial u}{\partial t} = -(-\mathcal{L})^{\beta} u$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(1) As
$$ho(x,y)t^{-1/(lphaeta)}
ightarrow\infty$$
,

$$\mathbb{E} p(S_t, x, y) \sim \frac{C_1 \alpha \beta}{\Gamma(1-\beta)} C_2^{-d-\alpha\beta} \int_0^\infty s^{d+\alpha\beta-1} F(s) \, \mathrm{d} s \cdot \rho(x, y)^{-d-\alpha\beta} t.$$

(2) As $\rho(x,y)t^{-1/(\alpha\beta)} \to 0$,

$$\mathbb{E} p(S_t, x, y) \sim C_1 F(0+) \frac{\Gamma\left(\frac{d}{\alpha\beta}\right)}{\beta \Gamma\left(\frac{d}{\alpha}\right)} t^{-d/(\alpha\beta)}.$$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

Theorem

(1) As $\rho(x,y)^{-\alpha/\beta}t \to \infty$, $\mathbb{E} p(S_t^{-1},x,y)$ is equivalent to

$$\begin{cases} C_1 F(0+) \frac{\Gamma\left(1-\frac{d}{\alpha}\right)}{\Gamma\left(1-\frac{\beta d}{\alpha}\right)} t^{-\beta d/\alpha}, & \text{if } d < \alpha, \\ \frac{C_1 \beta}{\Gamma\left(1-\beta\right)} F(0+) t^{-\beta} \log\left[\rho(x,y)^{-\alpha/\beta}t\right], & \text{if } d = \alpha, \\ \frac{C_1 C_2^{\alpha-d} \alpha}{\Gamma\left(1-\beta\right)} \int_0^\infty s^{d-\alpha-1} F(s) \mathrm{d}s \cdot \rho(x,y)^{\alpha-d} t^{-\beta}, & \text{if } d > \alpha. \end{cases}$$

邓昌松 (武汉大学)

イロト 不得下 イヨト イヨト

æ

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

Theorem

(1) As $\rho(x,y)^{-\alpha/\beta}t \to \infty$, $\mathbb{E} p(S_t^{-1},x,y)$ is equivalent to

$$\begin{cases} C_1 F(0+) \frac{\Gamma\left(1-\frac{d}{\alpha}\right)}{\Gamma\left(1-\frac{\beta d}{\alpha}\right)} t^{-\beta d/\alpha}, & \text{if } d < \alpha, \\ \frac{C_1 \beta}{\Gamma(1-\beta)} F(0+) t^{-\beta} \log\left[\rho(x,y)^{-\alpha/\beta}t\right], & \text{if } d = \alpha, \\ \frac{C_1 C_2^{\alpha-d} \alpha}{\Gamma(1-\beta)} \int_0^\infty s^{d-\alpha-1} F(s) \mathrm{d}s \cdot \rho(x,y)^{\alpha-d} t^{-\beta}, & \text{if } d > \alpha. \end{cases}$$

æ

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \ x, y \in M.$$

Theorem

(1) As
$$\rho(x,y)^{-\alpha/\beta}t \to \infty$$
, $\mathbb{E} p(S_t^{-1},x,y)$ is equivalent to

$$\begin{cases} C_1 F(0+) \frac{\Gamma\left(1-\frac{d}{\alpha}\right)}{\Gamma\left(1-\frac{\beta d}{\alpha}\right)} t^{-\beta d/\alpha}, & \text{if } d < \alpha, \\ \frac{C_{1\beta}}{\Gamma(1-\beta)} F(0+) t^{-\beta} \log\left[\rho(x,y)^{-\alpha/\beta}t\right], & \text{if } d = \alpha, \\ \frac{C_1 C_2^{\alpha-d} \alpha}{\Gamma(1-\beta)} \int_0^\infty s^{d-\alpha-1} F(s) \mathrm{d} s \cdot \rho(x,y)^{\alpha-d} t^{-\beta}, & \text{if } d > \alpha. \end{cases}$$

邓昌松 (武汉大学)

æ

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(2) Let $\rho(x, y)^{-\alpha/\beta}t \to 0$. If p(t, x, y) is of jump type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim \frac{C_1 C_2^{-d-\alpha}}{\beta \Gamma(\beta)} \rho(x, y)^{-d-\alpha} t^{\beta}$$

If p(t, x, y) is of diffusion type, then

 $\mathbb{E} p(S_t^{-1}, x, y) \sim K_1 \rho(x, y)^{-\frac{d(1-\beta)}{\alpha-\beta}} t^{-\frac{d(\alpha-1)\beta}{\alpha(\alpha-\beta)}} \exp\left[-K_2 \rho(x, y)^{\frac{\alpha}{\alpha-\beta}} t^{-\frac{\beta}{\alpha-\beta}}\right]$

where $K_i = K_i(d, lpha, eta) > 0$ are explicitly given (omitted here).

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 23 / 27

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(2) Let $\rho(x, y)^{-\alpha/\beta}t \to 0$. If p(t, x, y) is of jump type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim \frac{C_1 C_2^{-d-\alpha}}{\beta \Gamma(\beta)} \rho(x, y)^{-d-\alpha} t^{\beta}.$$

If p(t, x, y) is of diffusion type, then

 $\mathbb{E} p(S_t^{-1}, x, y) \sim K_1 \rho(x, y)^{-\frac{d(1-\beta)}{\alpha-\beta}} t^{-\frac{d(\alpha-1)\beta}{\alpha(\alpha-\beta)}} \exp\left[-K_2 \rho(x, y)^{\frac{\alpha}{\alpha-\beta}} t^{-\frac{\beta}{\alpha-\beta}}\right]$

where $K_i = K_i(d, \alpha, \beta) > 0$ are explicitly given (omitted here)

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 23 / 27
Asymptotics for $\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(2) Let $\rho(x, y)^{-\alpha/\beta}t \to 0$. If p(t, x, y) is of jump type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim \frac{C_1 C_2^{-d-\alpha}}{\beta \Gamma(\beta)} \rho(x, y)^{-d-\alpha} t^{\beta}.$$

If p(t, x, y) is of diffusion type, then

 $\mathbb{E} p(S_t^{-1}, x, y) \sim K_1 \rho(x, y)^{-\frac{d(1-\beta)}{\alpha-\beta}} t^{-\frac{d(\alpha-1)\beta}{\alpha(\alpha-\beta)}} \exp\left[-K_2 \rho(x, y)^{\frac{\alpha}{\alpha-\beta}} t^{-\frac{\beta}{\alpha-\beta}}\right]$

where $K_i = K_i(d, \alpha, \beta) > 0$ are explicitly given (omitted here)

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 23 / 27

Asymptotics for $\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(2) Let $\rho(x, y)^{-\alpha/\beta}t \to 0$. If p(t, x, y) is of jump type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim \frac{C_1 C_2^{-d-\alpha}}{\beta \Gamma(\beta)} \rho(x, y)^{-d-\alpha} t^{\beta}.$$

If p(t, x, y) is of diffusion type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim K_1 \rho(x, y)^{-\frac{d(1-\beta)}{\alpha-\beta}} t^{-\frac{d(\alpha-1)\beta}{\alpha(\alpha-\beta)}} \exp\left[-K_2 \rho(x, y)^{\frac{\alpha}{\alpha-\beta}} t^{-\frac{\beta}{\alpha-\beta}}\right]$$

where $K_i = K_i(d, \alpha, \beta) > 0$ are explicitly given (omitted here)

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 23 / 27

Asymptotics for $\frac{\partial^{\beta} u}{\partial t^{\beta}} = \mathcal{L} u$

$$p(t, x, y) = \frac{C_1}{t^{d/\alpha}} F\left(C_2 \frac{\rho(x, y)}{t^{1/\alpha}}\right), \quad t > 0, \, x, y \in M.$$

Theorem

(2) Let $\rho(x, y)^{-\alpha/\beta}t \to 0$. If p(t, x, y) is of jump type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim \frac{C_1 C_2^{-d-\alpha}}{\beta \Gamma(\beta)} \rho(x, y)^{-d-\alpha} t^{\beta}.$$

If p(t, x, y) is of diffusion type, then

$$\mathbb{E} p(S_t^{-1}, x, y) \sim K_1 \rho(x, y)^{-\frac{d(1-\beta)}{\alpha-\beta}} t^{-\frac{d(\alpha-1)\beta}{\alpha(\alpha-\beta)}} \exp\left[-K_2 \rho(x, y)^{\frac{\alpha}{\alpha-\beta}} t^{-\frac{\beta}{\alpha-\beta}}\right]$$

where $K_i = K_i(d, \alpha, \beta) > 0$ are explicitly given (omitted here).

Idea of the proofs

$$\mathbb{E} p(S_t, x, y) = \int_0^\infty p(s, x, y) \mathbb{P}(S_t \in \mathrm{d}s).$$
$$\mathbb{E} p(S_t^{-1}, x, y) = \int_0^\infty p(s, x, y) \mathbb{P} \left(S_t^{-1} \in \mathrm{d}s\right).$$

Asymptotic for the density of stable subordinator:

$$\frac{\mathbb{P}(S_1 \in \mathrm{d}s)}{\mathrm{d}s} \sim \begin{cases} C_1(\beta) \, s^{-\frac{2-\beta}{2(1-\beta)}} \exp\left[-C_2(\beta) \, s^{-\frac{\beta}{1-\beta}}\right], & \text{as } s \to 0, \\ \\ \frac{\beta}{\Gamma(1-\beta)} \, s^{-\beta-1}, & \text{as } s \to \infty. \end{cases}$$

Idea of the proofs

$$\mathbb{E} p(S_t, x, y) = \int_0^\infty p(s, x, y) \mathbb{P}(S_t \in \mathrm{d}s).$$
$$\mathbb{E} p(S_t^{-1}, x, y) = \int_0^\infty p(s, x, y) \mathbb{P} \left(S_t^{-1} \in \mathrm{d}s\right).$$

Asymptotic for the density of stable subordinator:

$$\frac{\mathbb{P}(S_1 \in \mathrm{d}s)}{\mathrm{d}s} \sim \begin{cases} C_1(\beta) \, s^{-\frac{2-\beta}{2(1-\beta)}} \exp\left[-C_2(\beta) \, s^{-\frac{\beta}{1-\beta}}\right], & \text{as } s \to 0, \\ \\ \frac{\beta}{\Gamma(1-\beta)} \, s^{-\beta-1}, & \text{as } s \to \infty. \end{cases}$$

Asymptotic formula (Laplace method/ Tauberian theorem)

If $h \geq 0$ has a unique local minimum point at $r_0 \in (0,\infty)$ and $h''(r_0) > 0$,

$$\int_0^\infty e^{-Ch(r)} dr \sim e^{-Ch(r_0)} \sqrt{\frac{2\pi}{Ch''(r_0)}} \quad \text{as } C -$$

where ϕ is the so-called Bernstein function.

Asymptotic expansion?

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 26 / 27

where ϕ is the so-called Bernstein function.

Asymptotic expansion?

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 26 / 27

where ϕ is the so-called Bernstein function.

Asymptotic expansion?

邓昌松 (武汉大学)

where ϕ is the so-called Bernstein function.

Asymptotic expansion?

邓昌松 (武汉大学)

where ϕ is the so-called Bernstein function.

Thanks for Your Attention!

邓昌松 (武汉大学)

Asymptotic Formulas for the Heat Kernels c @ 吉林大学 2019年7月 27 / 27